RESEARCH ARTICLE
Assessing the Needs to Incorporate Completion Details in a Petroleum Reservoir Simulation Model
Liang-Biao Ouyang
Article Information
Identifiers and Pagination:
Year: 2015Volume: 8
First Page: 16
Last Page: 28
Publisher Id: TOPEJ-8-16
DOI: 10.2174/1874834101508010016
Article History:
Received Date: //2015Revision Received Date: //2015
Acceptance Date: //2015
Electronic publication date: 20/2/2015
Collection year: 2015
open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Most of the current research and commercial reservoir simulators lack the capability to handle complex completion details like perforation tunnels in a simulation study. In most common applications, the simplified handling of completion complexity in reservoir simulations is not expected to introduce significant error in simulation results. However, it has been found that under certain circumstances, especially in high rate wells that have become more and more common in deepwater oil and profilic gas development, exclusion of the complex completion details in a reservoir simulation model would lead to nontrivial errors. New equations have been proposed to assess the needs to incorporate completion details in a reservoir simulation study based on the understanding of the fluid flow in a formation, the fluid flow along a wellbore and the fluid flow through perforation tunnels if exist. A series of sensitivity studies with different completion options under different flow and reservoir environments has been conducted to provide some guidance to improve well performance prediction through reservoir simulation. Impacts of key parameters like perforation density, perforation diameter, perforation length, wellbore length, borehole diameter, well completion configuration, well placement, reservoir permeability, reservoir heterogeneity, pressure drawdown, etc, have also been investigated.