RESEARCH ARTICLE


How to Approach Subsidence Evaluation for Marginal Fields: A Case History



Christoforos Benetatos, Vera Rocca*, Quinto Sacchi, Francesca Verga
Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.


Article Metrics

CrossRef Citations:
8
Total Statistics:

Full-Text HTML Views: 448
Abstract HTML Views: 315
PDF Downloads: 1
Total Views/Downloads: 764
Unique Statistics:

Full-Text HTML Views: 259
Abstract HTML Views: 197
PDF Downloads: 1
Total Views/Downloads: 457



© 2015 Rocca et al.;

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Correspondence: * Address correspondence to this author at the Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.


Abstract

This paper presents the evaluation of the subsidence potentially induced by underground storage of natural gas in a marginal depleted field located in Southern Italy. The critical aspect of the study was the lack of data because economic and logistic reasons had restricted data acquisition at the regional scale to perform a geomechanical study. This limitation was overcome by accurately gathering the available data from public sources so that the geometry of a largescale 3D model could be defined and the formations properly characterized for rock deformation analysis. Well logs, seismic data and subsidence surveys at the regional scale, available in open databases and in the technical literature, were integrated with the available geological and fluid-flow information at the reservoir scale. First of all, a 3D geological model, at the regional scale, incorporating the existing model of the reservoir was developed to describe the key features of a large subsurface volume while preserving the detail of the storage reservoir. Then, a regional geomechanical model was set up for coupled mechanic and fluid-flow analyses. The stress and strain evolution and the associated subsidence induced in the reservoir and surrounding formations by historical primary production as well as future gas storage activities were investigated. Eventually, the obtained results were validated against the measurements of ground surface movements available from the technical literature for the area of interest, thus corroborating the choice of the most critical geomechanical parameters and relevant deformation properties of the rocks affecting subsidence.

Keywords: 3D geological modeling, coupled fluid-flow and mechanical analysis, gas storage, subsidence analysis.