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Abstract: By analyzing the permeability controlling factors of tight sandstone reservoir in Wuhaozhuang Oil Field, the 

permeability is considered to be mainly controlled by porosity, clay content, irreducible water saturation and diagenetic 

coefficient. Because the conventional BP algorithm has its drawbacks such as slow convergence speed and easy falling 

into the local minimum value, an improved three-layer feed-forward BP neural network model is built by MATLAB neu-

ral network toolbox to predict permeability according to the four permeability controlling factors, while studying samples 

of model are selected based on the representative core analysis data. The simulation based on improved neural network 

model shows that the improved model has a faster convergence speed and better accuracy. The consistency between 

model prediction value and lab test value is good and the mean squared error is less. Therefore, the new model can meet 

the needs of the development geology research of oil field better in the future. 
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1. INTRODUCTION 

Tight sandstone reservoirs usually undergo complicated 

diagenesis and structural reconstruction throughout the long 
geological history. It is often characterized by poor physical 

properties, strong diagenetic intensity, complex pore struc-

ture and strong heterogeneity. It is hard to conduct identifica-
tion, prediction and quantitative calculation of tight sand-

stone reservoir’s petrophysical parameters [1-3]. The main 

role of logging interpretation is to accurately obtain petro-
physical parameters based on the core and logging informa-

tion and provide reliable basic data for subsequent reservoir 

evaluation and numerical simulation. It is necessary but chal-
lenging to determine petrophysical parameters of tight sand-

stone reservoirs more precisely based on the available log-

ging data. Permeability is a key parameter in tight sandstone 
reservoir’s evaluation, whose accuracy will directly affect 

the productivity determination and reservoir’s heterogeneity 

research [4-8]. Based on the permeability controlling factors 
analysis, this paper took the tight sandstone reservoir from 

Wuhaozhuang Oil Field as an example and established per-

meability prediction model of tight sandstone reservoirs by 
using the modified BP neural network algorithm. 

2. THE ANALYSIS OF CONTROLLING FACTORS 
OF PERMEABILITY OF TIGHT SANDSTONE RES-

ERVOIR  

For any kind of medium-high permeable sandstone reser-
voir, the distribution of sedimentary microfacies is vital on  
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controlling the reservoir’s physical properties. As for tight 

sandstone reservoir, however, the diagenesis is always one of 

the most important controlling factors on its tightening [9-
12]. Therefore, we should not simply establish uniform, hi-

erarchical or regional models for permeability interpretation 

of tight sandstone reservoirs, the impact of diagenesis needs 
to be considered additionally. The key question is how to 

quantify the impact of diagenesis on permeability. The di-

agenesis coefficient is the parameter that reflects the degree 
of impact on original porosity of all types of diagenesis [13]. 

It fully reflects how the reservoir pore space is affected after 

series of diagenetic evolution. Generally the coefficient is 
between 0 1, the higher the value is, the stronger the im-

pact will be on the diagenesis which improves the overall 

reservoir’s petrophysical properties. The weaker the impact 
is on the diagenesis which deteriorates the overall reservoir’s 

petrophysical properties, the higher the porosity and perme-

ability will be; the smaller the value is, the stronger the im-
pact will be on the diagenesis which deteriorates the overall 

reservoir’s petrophysical properties and the lower the poros-

ity and permeability. Therefore, the change of petrophysical 
properties caused by diagenesis can quantitatively character-

ized by diagenetic coefficient. 

Based on the petrophysical experiment and previous re-

search achievements, the paper has applied porosity, clay 

content, irreducible water saturation and diagenetic coeffi-
cient to predict the permeability. Through polyfactorial 

analysis between four parameters and permeability, Table 1 

shows that the correlation coefficients between five parame-
ters are all higher than 0.5 and the diagenetic coefficient is 

0.629, which further highlights its importance on controlling 

reservoir permeability. 
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Table 1.  Polyfactorial analysis on permeability. 

Parameter Porosity Clay Content Irreducible Water Saturation Diagenetic Coefficient Permeability 

Porosity 1     

Clay Content -0.470 1    

Irreducible Water Saturation -0.509 0.577 1   

Diagenetic Coefficient 0.621 -0.681 -0.454 1  

Permeability 0.753 -0.551 -0.558 0.629 1 

 

Table 2.  Data of training samples. 

Number of Sample 
Porosity 

(%) 

Clay Content 

(%) 

Irreducible Water 

Saturation (%) 

Diagenetic  

Coefficient 

Permeability 

(mD) 

1 7.6 3.6 12.1 0.082 3.7 

2 15.1 6.5 9.6 0.067 4.1 

3 14.6 7.6 4.2 0.075 0.8 

4 6.6 2.1 10.3 0.092 8.0 

5 3.8 23.4 25.1 0.004 0.2 

6 17.5 18.9 21.8 0.038 3.3 

7 16.9 6.5 18.5 0.064 3.6 

8 9.3 5.4 9.2 0.061 2.6 

9 9.2 8.9 20.6 0.081 0.6 

10 8.3 6.5 4.2 0.048 2.0 

11 9.3 6.5 14.2 0.021 2.2 

12 9.7 17.9 20.1 0.014 0.4 

13 15.7 19.2 22.6 0.008 1.0 

14 13.1 17.8 19.6 0.017 0.6 

15 13.4 16.5 17.6 0.019 0.6 

16 8.1 23.1 20.3 0.009 0.3 

17 7.7 24.9 24.3 0.01 0.4 

18 10.1 28.2 12.8 0.017 0.4 

19 9.1 6.7 19.6 0.05 0.3 

20 10.2 12.3 12.4 0.048 0.7 

21 11.6 9.8 15.4 0.019 0.7 

 

3. BP NEURAL NETWORK ALGORITHM AND ITS 

IMPROVEMENT  

BP algorithm, as a type of mathematical model of neural 

network, is suggested for solving weight optimization of 

multi-layer feed-forward neural network model. It is also one 

of the most widely used neural network algorithms and the 

most practical one in automatic control. However, it has de-

fects such as easy falling into local minimum value and slow 

convergence rate. In order to adjust these two defects occur-

ring in iterative process, Additional Momentum Method and 

Self-adaptive Learning Rate Method are adopted [14-18]. 

Based on back propagation method, using Additional 
Momentum Method, the change of every weight function 
will be added with a value that is proportional to the last 
weight function’s change and creates new weight function’s 
change. The detailed workflow is to overlay the current 
weight adjustment value with a portion of previous weight 
adjustment value by the error calculation, and takes it as the 
actual weight adjustment value, which is:  
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Fig. (1). BP neural network model structure. 

 

     

Fig. (2). The training process of conventional neural network model and the correlation between core permeability and predicted permeability.  

 

ij
n( ) = ij

n 1( ) + 1+( ) f
ij

n 1( )( )  (1) 

Where,  is the learning efficiency, whose range is be-
tween 0.001~10; n is the training times; is the momentum 
factor, generally 0< <0.9; 

  
f

ij
n 1( )( ) is the gradient of 

the error function. 

The Additional Momentum Method is adopted to make 
the adjustment of the weight function change towards the 
direction of the average of error surface bottom. When the 
network weight functions enter the flat area, the occurrence 
of =0 can be avoided and prevent the network from fal-
ling into the local minimum value of error surface. 

The principle of Self-adaptive Learning Rate Method is 
that study rate will adjust and adapt on its own according to 
the change of error. By applying the Equation (2) during the 
training process, stability and convergence speed can be im-
proved. 

  

n( ) =

1.05 n 1( )
0.7 n 1( )

n 1( )

E n( ) < E n 1( )( )
E n( ) < 1.04E n 1( )( )

else

 (2) 

4. THE ESTABLISHMENT OF PERMEABILITY 
PREDICTION MODEL AND ITS PRECISION 

ANALYSIS 

4.1. Establishing Model 

The permeability prediction model is established by use 
of MATLAB neural network toolbox with a three-layered 
BP neural network structure. Training samples of tight sand-
stone are from one coring well of Wuhaozhuang Oil Field 
(Table 2). Porosity, clay content, irreducible water saturation 
and diagenetic coefficient are selected as the neural nodes of 
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Fig. (3). The training process of improved neural network model and the correlation between core permeability and predicted permeability. 

 

 

Fig. (4). Comparison between core permeability, the predicted permeability of improved model and the predicted permeability of conven-

tional model.  

 

input layer. The node value of output layer is set as 1, repre-

senting permeability. And the number of hidden layer nodes 

is set as 20. The permeability prediction neural network 
structure is shown in Fig. (1). The minimum mean squared 

error, learning efficiency, momentum coefficient and maxi-

mum number of training are set as 0.00001, 0.01, 0.95 and 
15000. The order of samples has no impact on the results as 

the model applies group training. The training ends when the 

training number reaches to the maximum setting number or 
mean squared error threshold value. Take the mean squared 

error to test the generalization ability of the network, and 

obtain higher emulation neural network model via repeated 
training network. The simulation results are shown in the 

Fig. (2a) and Fig. (3a). It can be seen that after the original 

and improved model undergoing 600 and 80 time’s network 
training, respectively, network errors (mean squared error) 

tend to be stable. The improved model shows sharp down-

ward trend and its convergence rate is faster. As to the pre-

diction accuracy, it can be seen from Fig. (2b) and Fig. (3b), 
by comparison, the predicted permeability of proved model 

is more fitting with core permeability. 

4.2. Model Accuracy Analysis 

According to the established high-emulation BP neural 
network model, the permeability of other 16 cores from the 
same reservoir has been predicted Fig. (4). By comparision 
with core permeability, the mean squared error of the im-
proved model is 1.829, while the mean squared error of the 
conventional model is 6.2. The results show that the accu-
racy is improved dramatically.  
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CONCLUSION 

The analysis of controlling factors of tight sandstone res-
ervoir’s petrophysical properties is the basis of establishing 
the prediction model. By selecting appropriate controlling 
factors, the accuracy of permeability prediction model is 
enhanced. The polyfactorial analysis is used to confirm that a 
strong non-linear relationship exists amongst porosity, clay 
content, irreducible water saturation, diagenetic coefficient 
and permeability, while the BP neural network has the ability 
to implement the complex non-linear mapping, which maks 
it the best option to solve the complex internal mechanism 
issues as these. 

Applying Additional Momentum Method and Self-
adaptive Learning Rate Method to modify BP algorithm can 
reduce the oscillation trend, increase its stability, improve 
the network convergence and enhance the prediction accu-
racy.  

The prediction results show that the modified BP neural 
network model has less mean squared error than conven-
tional model. In conclusion, the BP neural network with 
modified algorithm is more feasible on the prediction of tight 
sandstone permeability. 
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