RESEARCH ARTICLE
Feasibility Study of While-drilling Data Transmission Technology Based on Radio Frequency Identification
Wei-Ning Ni*, Ji-Bo Li, Shan-Guo Li, Wei Zhang
Article Information
Identifiers and Pagination:
Year: 2015Volume: 8
First Page: 293
Last Page: 296
Publisher Id: TOPEJ-8-293
DOI: 10.2174/1874834101508010293
Article History:
Received Date: 16/10/2014Revision Received Date: 27/2/2015
Acceptance Date: 23/6/2015
Electronic publication date: 19/8/2015
Collection year: 2015
open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Downhole data transmission methods based on mud-pulse and low-frequency electromagnetic waves can’t satisfy the need of large amount and high speed data uploading during drilling. In this paper, a novel data transmission technique based on releasing RFID tags by LWD tools is designed and validated. As the memory and transmission media, RFID tags are pre-mounted tactfully in cavities of the downhole releasing tool which can transmits/write LWD data to these tags. By releasing regularly or irregularly into the annulus fluids, RFID tags can be carried to the surface by mud circulation. To finish data transportation function, LWD data can be read out on the surface. Wireless charging high capacity (1Mbits) RFID tags are designed, which contains microprocessor and memory, to expand the storage capacity of RFID tags. The power supply for microprocessor and memory in the tag is electromagnetic waves from RF Reader/Writer module. The equivalent data transmission speed of this system can be up to 278 bit/s (1 tag/h is assumed), which is more much faster than the traditional mud pulser (<10 bit/s).