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Abstract: Unconventional reservoirs are keys to oil and gas exploration and development, especially shale gas reservoirs. 

Discriminated shale gas reservoir lithofacies are, in particular, a primary problem in shale gas reservoir engineering. The 

mineral composition will affect both absorbed and free gas contents, therefore their identification is important. The min-

eral composition is one part of lithofacies. The shale content has always been used in previous lithological identifications: 

this method is effective in sand reservoirs; however, it is not suitable for use in shale gas reservoirs. This paper takes No.7 

section in Yanchang formation in Ordos basin as an example. Through a lithological analysis, it was concluded that over-

lap method and cross-plot method are not also inappropriate for shale gas reservoirs. The Ordos basin shale gas reservoir 

is divided into seven lithofacies. We form a mathematical method and apply it to shale gas reservoirs using the shale vol-

ume and lgR which are available from conventional well logging and reflect organic matter in the processed dataset. De-

cision tree is used here. However, there were too many parameters to discriminate all lithofacies precisely. Principal com-

ponent analysis (PCA) is a technique used to reduce multidimensional data sets to lower dimensions for analysis. This 

technique can be useful in petro-physics and geology as a preliminary method of combining multiple logs into a single en-

tity or two logs without losing information. Combining PCA and a decision tree algorithm, the lithofacies of a shale gas 

reservoir were accurately discriminated. 
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1. INTRODUCTION 

In the mid-late period of oil and gas field development, 
unconventional reservoirs are important for increasing hy-
drocarbon reserves and production. Shale gas reservoirs are 
an important exploration direction for unconventional reser-
voir engineering. Shale gas reservoirs are self-generating and 
self-accumulating. Their stratification comprises fine mix-
tures composed of organic matter, hydrocarbons, and rock 
debris, therefore any physical analysis and testing thereof is 
complicated. This brings significant challenges and opportu-
nities to identify, evaluate, and predict the productivity of 
shale gas reservoirs. Shale gas reservoirs are characterized 
by low porosity and low permeability and lithology thereof 
is quite different from that of conventional reservoirs. So 
exactly identifying the lithological characteristics of such 
reservoirs may provide the basis for further research and 
development of shale gas reservoirs. 

Various studies have found that for shale deposits with 
laminations, sand and shale inter-laminar strata are an  
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important reservoir space [1]. For shale reservoirs, it is not 

enough to calculate the shale content alone. Firstly, in addi-

tion to shale sections with high shale contents, shale reser-
voirs also include shale inter-laminar sections. These layers 

cannot be recognised when only calculating the shale con-

tent. Shale with laminations contributes more to the reser-
voirs than mudstone. So exactly identifying the formation 

lithology, composition, and structure, of internal minerals is 

a key to productive shale gas exploration. According to re-
search from the US National Petroleum Council, using geo-

chemical analysis combined with logs represents an impor-

tant direction for future development [2]. Accurately identi-
fying layer lithofacies can greatly improve the success rate of 

shale gas reservoir developments. Currently, due to the de-

velopment cost, the amount of drilling logs is limited and is 
unable to meet the requirements of modern shale gas explo-

ration. Logs contain a wealth of geological information  

[3-9]. Using this geophysical method to identify lithologies 
has high accuracy and low costs. So, this research focusses 

on the indentification of the lithofacies of shale gas reser-

voirs through the features contained in geophysical logs. 

 The research takes the Yanchang formation of triassic 

period in the south-eastern Ordos Basin as an example  

(Fig. 1): previous research and field tests show that this area 
has lacustrine shale gas accumulation conditions. This lacus-
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trine deposit was also multi-level, multi-type, evolutionary, 

with miscellaneous other phenomena present (Fig. 2). Some 

experts suspect that lacustrine deposits do not have wide-
spread shale gas development and exploitable shale gas ex-

ploration potential [10]. Despite the development potential, 

marine shale gas reservoirs are not preferred by those ex-
perts. However, based on the investigation of shale gas wells 

in the south-eastern Ordos Basin, Zhang had analysed shale 

gas accumulation features, shale gas generation and 
accumulation mechanisms, and its enrichment [11-13]. Xu 

studied the Ordos Basin shale gas and considered the  

claystone of the Yanchang formation to be widely distributed  
[14]. The thickness of the shale, and its organic carbon  

content, are higher; thermal evolution is moderate and gas  

measurement shows activity. Shale fractures are well  
developed, and its shale gas resource potential is significant.  

So, the south-eastern region of the Yanchang formation in  

the Ordos Basin is a shale gas range with potential  
profitability (indeed data suggest it represents an  

improvement over some marine shale deposits). In April  

2011, to review LP177 Well changes, seven sections of the 
shale strata were pressure-tested (yielding a daily volume of  

2350 m
3
 of natural gas) thus making the first lacustrine shale  

gas well in the world. Many wells have been subsequently  
fractured successfully and industrial gas-flows obtained  

therefrom. From then on, it formed a prelude to a lacustrine  

shale gas development revolution in China. Unlike extensive  
research into marine shale gas deposits, lacustrine shale gas  

engineering can call upon no previous experience. In the  

process of exploration and operation, engineers are  
confronted with multiple challenges. Therefore, the  

establishment of a set of continental facies identification  

methods for shale gas was urgently required. 

This research analysed the characteristics of a terrestrial 
shale gas reservoir. Firstly, cross-plot and curve over-play 
methods were used to identify the lithofacies therein. How-
ever, these conditional methods could not evaluate the litho-
facies accurately. Using principal component analysis 
(PCA), the relevant parameters were obtained therefrom. 
Then, a decision tree algorithm was used to discriminate 
between the lithofacies using PCA parameters. 

2. WELL-LOGGING RESPONSE CHARACTERIS-
TICS OF THE LITHOFACIES 

Shale gas reservoirs are not the unique source of black 

shale. All tight microclastic rocks, which are rich in organic 

material, and where gas is present in both absorbed and free 
forms, are effectively shale gas reservoirs. Shale gas reser-

voirs have complex mineral compositions. The chosen re-

search area contains quartz, feldspar, clay minerals, small 
amounts of calcite and dolomite, pyrite, and occasionally 

siderite. The mineral compositions vary greatly between 

wells and in different layers. Well-logging response charac-
teristics are always affected by lithology and mineral compo-

sition. This research is committed to analyzing wells through 

different lithologies and will be beneficial for identifying 
future exploitable reservoirs. Lithofacies, a part of the sedi-

mentary facies, are always used in oil geology, especially in 

stratigraphy and sedimentology. Lithofacies have a direct 
relationship with mineral and organic contents of strata. 

 

Fig. (1). Research area location map. 

 
Through XRD and organic matter pyrolysis experiments, 

the sedimentary lithofacies were divided into fine sandstone 
(F S), siltstone (S S), sand and shale inter-laminae with more 
shale (S & S(sh)), sand and shale inter-laminae with more 
sand (S & S(sa)), mudstone (M S), organic-rich black 
shale(B S), and ash tuff (A S). 

Here, box-and-whisker plots were used to represent the 
lithology and the diversity of the different lithofacies and 
their logging response characteristics. Box and whisker plot 
contain six data nodes: a set of data is arranged from large to 
small and the upper limb, upper quartile, median lower quar-
tile, lower edge, and some other outliers were calculated and 
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shown therewith. From the acoustic time log and neutron 
porosity log, it may be seen from Fig. (3) that there were 
obvious differences between the black shale and other rocks. 
Siltstone and fine sandstone were also easily distinguished 
from other rocks, but the gaps between them were small. 
Though most of lithologic characteristics of ash tuff were the 
same as those of other rocks, the radiation signature of the 
ash tuff was strong. Although a lot of differences were found 
between S & S(sh) and S & S(sa), there was still an overlap-
ping area in the single logging curve. From the box and 
whisker plots of deep and shallow resistivity, the resistivity 
of fine sandstone, siltstone, ash tuff, S & S(sh), and S & 
S(sa) were all between 30 and 1000 ··m. Fig. (1) showed 
that mudstone had a low resistivity, and that shale had a high 
resistivity here. Because the shale was fine-grained and lack-
ing in organic matter, it formed a well-developed conductive 
network. 
 

 

Fig. (2). The stratigraphy of research area. 

 

3. LITHOFACIES IDENTIFICATION 

3.1. Traditional Identification Methods 

3.1.1. Qualitative Identification 

According to the logging curve characteristics of differ-
ent rock types in the study area, we identified the rock types 
from well-logging features such as AC, RT, and other log-
ging curves. GR reflected the total shale content, the perme-
ability of rock could be deduced through SP, AC indicated 
the total porosity, and the resistivity was indicated by RT. 
According to the aforementioned characteristics, we can 
identify the rock types in each target layer. Due to the poor 
permeability, strong adsorption capacity, and relatively high 
total porosity, the claystone was easily distinguished. If it 
contained oil and gas, it would have a high resistivity. Com-
pared with claystone, sandstone has a greater permeability, 
low SP, low GR, and low to medium AC. The characteristics 
of argillaceous siltstone and silty mudstone lie between clay-

stone and permeable sandstone. This method can qualita-
tively discriminate between pure sand and pure shale; how-
ever, just as shown in Fig. (4), S & S(sa) cannot be discrimi-
nated accurately. A photo of S & S(sa) is shown in Fig. (5). 

3.1.2. Curve Overlap Method 

Generally speaking, the overlap method is one using dif-
ferent logging response characteristics and their differences 
to recognise the lithology of each stratum. Corresponding to 
the different lithologies, sensitivity and logging curve are 
different. Selecting the most two sensitive curves, confirm-
ing the base line, then overlapping the two curves forms the 
basis for the method. As shown in Fig. (6), use of acoustic 
and neutron overlapping can readily identify shale; but it still 
suffers from some qualitative identification problems de-
pending upon the local geology. 

3.1.3. Cross-plot Method 

Cross-plotting uses different lithofacies well-logging re-
sponse characteristics. From Fig. (7), we found those seven 
lithofacies showed up in different regions when cross-
plotted. Black shale had a higher -value, a longer acoustic 
time, and a higher resistivity than other strata. However, 
there remained the problem of fuzzy interfaces. For now 
though, it was concluded that the conventional method was 
not suitable for application to shale gas reservoirs. 

3.2. Mathematical Geological Modelling 

3.2.1. The Flow Diagram of Mathematical Geology 

Petroleum exploration has been transformed by the appli-
cation of artificial intelligence (AI) [15-17]. In the middle, 
and later, periods of petroleum exploration and development, 
the total quantity of data has accumulated considerably and 
AI has become more and more important [18, 19]. Much 
valuable information can be extracted from the large vol-
umes of petroleum-exploration data. As one of the most sig-
nificant AI methods, data analysis plays an essential role in 
petroleum exploration and development [20, 21]. The tradi-
tional methods, cross-plot identification or ordinary linear 
regression, have not resolved the present problem. The di-
lemma of “more data, less knowledge” arises. So, machine 
learning, data processing, and a training model are helpful 
when trouble-shooting [22]. Many results may be obtained 
from data analysis methods, such as lithology identification, 
porosity and permeability distributions, flow unit types, 
sedimentary types, oil and gas and water reservoir identifica-
tion, and so on. Data analysis technology has accomplished 
much within the petroleum industry. In future, data analysis 
will accelerate the development of petroleum exploration. 
The basic steps for data analysis in petroleum exploration 
and development are shown in Fig. (8).  Data mining  
task definition: marking the label attributes.  Data collec-
tion: we should collect more data as far as possible to avoid 
over-fitting and under-fitting after task definition.  

 Pre-treatment: a high data quality is necessary for data 
mining. It is important to carry out data cleaning, noise reduc-
tion, and missing value processing.  Data processing: to make 
the data more suitable for data mining, attribute selection, fea-
ture subset selection, discretisation, binarisation, and other proc-
essing steps are needed.  Machine learning: the input 
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The GR distribution characteristics of lithofacies 

 

The Uranium distribution characteristics of lithofacies 

 

The Thorium distribution characteristics of  
lithofacies 

 

The Kalium distribution characteristics of lithofacies 

 

The acoustic time(AC) log distribution characteristics 
of lithofacies 

 

The neutron porosity(CNL) log distribution characteristics of 
lithofacies 

 

The litho-density(DEN) log distribution characteristics 
of lithofacies 

 

The litho-density(PE) log distribution characteristics of litho-
facies 

 
Fig. (3) contd…. 
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The deep resistivity(RD) log distribution characteris-

tics of lithofacies 

 

The shallow investigation resistivity distribution characteris-
tics of lithofacies 

Fig. (3). Well logging response characteristics of Terrestrial deposit shale gas reservoir lithofacies. 

 

 

Fig. (4). The well logging characteriscs of S&S(sa). 

 

 

Fig. (5). The photo of S&S(sa). 
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Fig. (6). The curves overlap method of Black shale. 

 

 

Fig. (7). Cross-plot figure. 

 

 

Fig. (8). The flow diagram of mathematical geology. 

 
dataset is vast and varied. Machines need to learn more in-
formation from the data.  Model generation: taking advan-
tage of different data mining algorithms, different models 
may be obtained by judicious setting of parameters.  Per-
formance measurement: different models produced by dif-

ferent data mining algorithms should be evaluated for their 
accuracy.  Knowledge: that model which has offered the 
best performance measurement will form part of the body of 
new knowledge. 
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3.2.2. Shale Gas Reservoir Dataset 

The common attributes which this topic selected include 
lithology curves (GR NGR SP), porosity logs (AC, DEN, 
CNL), resistivity curves (RD, RS), as well as PEF, Vsh and 

lgR which were calculated from well-logging data. 

 (1)  Vsh calculation method 

Vsh, which is the the clay volume, was mainly calculated 
from the --curve according to the experiential formula 
shown below: 

( ) ( )

( ) ( )2 1 2 1
GCUR SH GCUR

sh

SH GR GMAX GMAX GMIN

V

=

=   (1)
 

In particular : GMAX: the log value of clean sandstone 

GMIN: the log value for pure shale 

GCUR: empirical coefficient, related to the tertiary strata, 
adopted value here: 3.7. 

(2) lgR calculation method 

lgR can reflect the organic matter content and its matur-
ity. Through the log curve overlapping method, overlapping 
the porosity and resistivity curves in accordance with the 
appropriate scale, we can determine the source rock types 
according to the difference between the two curves. Under 
normal circumstances, the acoustic porosity curve and r deep 
resistivity curve are selected. If the formation is full of water 
and lacking in organic matter, the two curves are parallel and 
overlap together. However, in oil and gas reservoirs, and 

non-reservoirs rich in organic matter, the two curves differ. 
In application, the acoustic transit time, AC 50 μs/ft (168 
μs/m) is equal to a logarithmic unit of resistivity RT: 

lgR=lg(RT/RTbase)+0.02*(AC-ACbase)  (2) 

This research selected different baselines according to the 
different wells and used (2) to calculate lgR which showed 
a linear correlation with total organic carbon (TOC) content. 
The organic matter content in the formation can be used to 
judge differences in lithofacies. 

3.2.3. Decision Tree Method 

Decision tree (DT) is the most simple and widely used 
technique. The result from DT analysis looks like a tree 
(hence the name): it is intuitive, concise, quantitative, and 
more logical to human interpretation. DT uses a hyperplane 
with a single attribute to cut the input space repeatedly: each 
class can thus be divided. The DT analysis is used on a proc-
essed dataset to build a predictive model. From the model it 
was found that the lithofacies in this shale gas reservoir were 
complex. If the model had accuracy as high as that suggested 
in Table 1, the model would over-fit (see Fig. 9). Over-
fitting occurs because the model describes a random error or 
noise instead of the underlying relationship. The model was 
also excessively complex. A model that has been over-fitted 
will generally return poor predictive performance, as it can 
exaggerate minor fluctuations in the data. Otherwise, if the 
model were applicable, its accuracy would be poor. 

 

Fig. (9). Decision tree model. 
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Table 1.  Decision tree model accuracy. 

 
True 

S S 

True 

B M 

True 

S&S(sh) 

True 

B S 

True 

S&S(sa) 

True 

A T 

True 

F S 

Class  

Precision 

Pred. S S 23 0 1 0 1 0 0 92.00% 

Pred. B M 1 16 0 1 1 0 0 84.21% 

Pred. S&S(sh) 1 0 23 1 0 1 1 85.19% 

Pred. B S 0 1 0 64 0 0 0 98.46% 

Pred. S&S(sa) 0 0 0 1 19 0 0 95.00% 

Pred. A T 1 0 0 0 0 3 0 75.00% 

Pred. F S 3 0 0 0 1 0 7 63.64% 

Class Recall 79.31% 94.12% 95.83% 95.52% 86.36% 75.00% 87.50%  

 

Table 2.  Principal component variables proportion of variance. 

Component Standard Deviation Proportion of Variance Cumulative Variance 

PC 1 2.643 0.411 0.411 

PC 2 1.633 0.157 0.568 

PC 3 1.452 0.124 0.692 

PC 4 1.187 0.083 0.774 

PC 5 1.073 0.068 0.842 

PC 6 0.918 0.05 0.892 

PC 7 0.841 0.042 0.933 

PC 8 0.637 0.024 0.957 

PC 9 0.584 0.02 0.977 

PC 10 0.42 0.01 0.988 

PC 11 0.35 0.007 0.995 

PC 12 0.276 0.004 0.999 

PC 13 0.084 0 1 

PC 14 0.052 0 1 

PC 15 0.04 0 1 

PC 16 0.02 0 1 

PC 17 0 0 1 

 
3.2.4. Principal Component Analysis (PCA) Method 

The former analysis methods failed to grasp key informa-
tion since the dataset had too many cross-correlated parame-
ters relative to the number of observations. PCA is a statisti-
cal procedure which uses an orthogonal transformation to 
convert a set of attributes of possibly correlated variables 
into a set of values of linearly uncorrelated variables called 
principal components. The number of principal components 
is less than or equal to the number of original variables 

(original attributes). That is to say that many original well-
logging attributes were converted to several independent 
attributes by using the aforementioned orthogonal transfor-
mation. These principal component variables can represent a 
transformation relationship between many well-logging at-
tributes (Table 2). This will reduce information loss. From 
the analysis, principal component variable values, and their 
proportional variance can obtained (Table 2). The variables 
which have the greatest proportion of the overall variance are 
chosen. The input data were normalized for each curve. This 
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Table 3.  Dataset range after normalization. 

Attribute Range 

CNL [-1.529 ; 2.289] 

DEN [-8.510 ; 1.767] 

SP [-2.176 ; 1.897] 

GR [-2.095 ; 4.666] 

RD [-0.444 ; 8.314] 

RS [-0.432 ; 8.746] 

LgRD [-2.647 ; 3.220] 

LgRS [-2.467 ; 3.206] 

U [-1.557 ; 3.554] 

K [-2.227 ; 2.564] 

TH [-1.968 ; 4.486] 

PE [-2.503 ; 2.619] 

THK [-2.030 ; 4.393] 

Upa [-4.043 ; 2.317] 

Vsh [-0.402 ; 11.781] 

AC [-1.823 ; 2.931] 

LgR [-1.538 ; 2.562] 

 
Table 4.  The coefficient of principal component variables. 

Attribute PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 

CNL 0.327 0.017 -0.067 -0.321 0.12 -0.014 -0.137 0.027 0.071 0.217 0.361 0.754 -0.011 -0.023 0.018 0.001 0 

DEN -0.244 -0.024 -0.17 0.365 0.392 0.11 -0.246 -0.14 -0.327 0.576 0.084 -0.029 -0.005 -0.02 0.019 0.29 0 

SP 0.109 -0.037 0.214 -0.171 0.722 -0.278 -0.236 0.37 0.142 -0.139 -0.149 -0.184 -0.004 -0.087 0.131 -0.017 0 

GR 0.295 -0.265 0.109 0.151 -0.112 -0.209 0.08 -0.039 -0.043 0.291 -0.765 0.269 0 0.014 0.004 0.002 0 

RD 0.266 0.258 0.103 0.386 0.038 0.133 0.231 0.244 0.2 0.102 0.107 -0.015 -0.375 0.519 0.314 0.031 0 

RS 0.263 0.26 0.098 0.392 0.025 0.128 0.223 0.25 0.225 0.141 0.096 -0.024 0.378 -0.501 -0.308 -0.031 0 

LgRD 0.306 0.255 -0.099 0.036 0.203 0.192 -0.092 -0.29 -0.174 -0.276 -0.154 0 -0.557 -0.163 -0.437 0.015 0 

LgRS 0.307 0.255 -0.108 0.031 0.184 0.18 -0.104 -0.322 -0.163 -0.258 -0.131 0.001 0.623 0.359 0.139 0.011 0 

U 0.248 0.017 0.184 0.219 -0.27 -0.376 -0.238 0.29 -0.65 -0.159 0.231 -0.019 0.008 -0.008 -0.002 0.001 0 

K 0.124 -0.235 -0.259 -0.018 0.297 -0.324 0.733 -0.156 -0.229 -0.048 0.195 -0.052 0.008 -0.011 -0.001 0 0.105 

TH 0.149 -0.47 0.165 0.017 0.026 0.471 -0.046 0.105 -0.08 -0.076 0.066 -0.041 0.01 0.002 -0.005 0 0.689 

PE 0.181 -0.158 -0.538 0.052 -0.152 -0.077 -0.134 0.217 0.227 -0.217 -0.037 -0.054 0.008 -0.05 0.032 0.67 0 

THK 0.162 -0.486 0.121 0.013 0.069 0.406 0.063 0.078 -0.11 -0.08 0.092 -0.047 0.011 0 -0.005 0 -0.717 

Upa 0.071 -0.17 -0.606 0.209 0.014 -0.031 -0.237 0.157 0.083 0.034 0.002 -0.058 -0.015 0.065 -0.039 -0.675 0 

Vsh 0.148 -0.289 0.248 0.356 -0.006 -0.327 -0.239 -0.542 0.398 -0.087 0.279 -0.06 -0.02 -0.011 0 -0.001 0 

AC 0.321 -0.013 0.026 -0.377 -0.107 -0.091 -0.06 0.01 0.064 0.449 0.101 -0.456 0.056 0.328 -0.44 0.048 0 

LgR 0.345 0.112 -0.078 -0.205 -0.139 0.091 -0.037 -0.199 -0.063 0.216 0.014 -0.315 -0.115 -0.449 0.618 -0.073 0 
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Fig. (10). The lithofacis identification result with PCA and Decision Tree. 

 
was done for each data point by subtracting the curve mean 
value and dividing by the curve standard deviation. The 
normalized data were then used to create the principal com-
ponent curves. The resulting PC curves were calculated from 
the eigenvectors by taking an input data level in a given well. 
Using the normalisation data, and then multiplying the nor-
malized curves by the corresponding eigenvalue for the 
curve, the results are summed. The normalized curve range is 
shown in Table 3. The dataset after pre-processing by nor-
malisation had nearly the same range. The proportion of 
variance of each variable formed the basis for the principal 
component curves as shown in Table 2. In the above exam-
ple 41.1% of the total variability in the data can be seen in 
the PC 1 curve, the PC 2 curve explained 15.7% thereof, and 
PC 9 only explained 0.02%. Hence the first eight curves ex-

plained 95.7% of the variability. Hence we have practically 
reduced the information in the 17 curve input to eight curves. 
The coefficient of the PC curves against each raw curve is 
shown in Table 4: PCA values were calculated using these 
values. Then, DT analysis will be re-used to classify the PC 
variables dataset. After PCA, the accuracy rose to 90%, and 
the method promised wide applicability. 

4. FIELD EXAMPLE 

PCA and DT were applied to data from the Ordos Basin 
lacustrine deposit shale gas well and the results were dis-
played in Fig. (10). First, the well logs should be inverted 
before processing to get precise boundary conditions and 
reduce the effects of instrument resolution limits. The first 
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track was the clay index curves, the second track was the 
resistivity curves, the third track was porosity, the fourth 
track was the PCA lithofacies identified result, and the fifth 
track was the DT-identified result. From the lithofacies iden-
tification result, it may be seen that PCA was better than DT 
and other methods in this shale gas deposit. At the bottom of 
the well, the DT method showed a dead zone (indicated in 
white): the PCA was more precise and of higher accuracy 
than the DT method. 

CONCLUSION  

With improvements in shale gas reservoir development, 
engineers need more accurate techniques to overcome the 
limitations of relying on a large analytical laboratory: log-
ging data therefore play an important role. Using the diver-
sity of logging data from different lithofacies, the proposed 
method can accurately identify formation rock facies and 
may pave the way for future shale gas reservoir studies. 

Using conventional well-logging curves the method can 
calculate the formation parameters. For example, reflecting 
the organic matter content of the formation of lgR, and the 
shale content were possible. By comparing multiple parame-
ters, it was found that the principal component analysis 
method for lithological facies recognition was more effec-
tive. Removing the logging curves that reflected the charac-
teristics of the formation of repeatability and obtaining the 
principal component vectors reflecting the characteristics of 
the formation, the shale gas reservoir lithology was eventu-
ally determined. 
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