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Abstract: Coal bed methane (CBM) reservoir production is controlled by a large set of parameters: geology, tectonics, reservoir,
completion and operation. Its simulation process is complicated, relative information is difficult to be obtained, so it is necessary to
analyze  accurately  coal  bed  gas  potential  production  capacity  by  adopting  other  mathematics  methods  in  case  of  incomplete
information.  Regarding this  problem, a  new type-2 fuzzy logic  system (T2FLS) method to  predict  CBM production capacity  is
proposed  in  this  paper.  Methods  analyze  and  assess  input  parameters  of  T2FLS by  integrating  qualitative  analysis  method  and
quantitative assessment method (Fuzzy cluster analysis and grey correlation degree analysis). Output parameters include cumulative
average gas production, peak gas rate and time to achieve a peak rate. T2FLS production forecast method is applied to CBM wells of
Hancheng mine and verification results show that such prediction results are highly consistent with the variation of the CBM well
production. The proposed method required less data. The comparison of this method with the existed method (ANN, T1FLS) shows
that the proposed method has notable advantage in generalization, stability and consistency.

Keywords: Coal bed methane, Fuzzy cluster analysis, Grey correlation degree analysis, Production prediction, Type-2 fuzzy logic
system.

1. INTRODUCTION

At present, China is the largest consumer and producer of coal in the world and much attention has been focused on
the production of CBM. As China had gradually expanded its investment in the development of CBM fields in the past
few  years,  the  number  of  drilling  and  producing  wells  has  increased  markedly.  By  2020,  China’s  annual  CBM
production was expected to be 400×108m3 [1]. However, the goal will not be achieved without a substantial increase in
CBM production in less developed basins, such as the Hancheng mining area, the largest mid rank CBM field in china.
By the end of 2013, there were more than one thousand production wells, however, the total daily production was about
30×104  m3.  Therefore,  it  is  necessary  to  develop  tools  that  can  assist  engineers  in  evaluation  of  CBM  production
prospects and overcome the lag to reach its true potential in production.

At present, the common methods of CBM production forecast include Arps decline curve method [2], numerical
simulation  method  [3],  artificial  neural  network  (ANN)  [4],  type  curve  analysis  [5]  and  Weng’s  model  [6].  Gas
production form CBM reservoirs is different from regular oil-gas reservoirs: CBM reservoirs is governed by complex
interaction of single-phase gas diffusion through micro-pore system and two-phase gas and water flow through cleat
system that are coupled through desorption process. As a result, conventional methods, such as decline curves can not
be utilized to predict CBM production.
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CBM ground development is a systematic project; the quality of gas production rate is influenced by many factors.
On the  one  hand,  it  is  very  difficult  to  get  coal  seam information  or  get  information  is  not  accurate  because  of  its
complex lithology, various reservoir types and heterogeneity. On the other hand, the development strategy of CBM is
low-cost so many parameters are not available. Thus, it is tough to establish the uniqueness of the type curves because it
needs to obtain the value of the peak gas rate, gas content, initial (maximum) water rate, cleat system porosity and
initial  cleat  system  water  saturation.  Currently,  the  best  tool  to  predict  CBM  production  is  numerical  models
(simulators) since they incorporate the unique flow and storage characteristics of CBM reservoirs. But these models are
often complicated to use, expensive, and time consuming. Therefore, there is a need for scientific, user-friendly tools
that can assist the engineers in evaluation of CBM prospects.

To overcome the shortcomings of the earlier methods, researchers have utilized ANN and its variants. However, the
problem of instability and uncertainties are still not being resolved yet. In fact, geosciences disciplines are not clear-cut
and  most  of  the  time  is  associated  with  high  level  of  uncertainties  [7],  and  this  is  a  major  defect  of  exiting  CBM
production  forecast  methods.  Type-2  fuzzy  logic  has  been  generally  acknowledged  as  being  better  and  ideal  for
uncertainty modeling [8 - 11]. Type-2 fuzzy logic, as an extension of Type-1 fuzzy logic, can handle such uncertainties
in a better way because the membership grade for each element is no longer a crisp value but a fuzzy set, and there are
more design parameters. It has since feature to handle uncertainties that caused by information loss such as information
being incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory or deficient [12 - 16]. Therefore, there
is a possibility that the type-2 FLS can handle uncertainty in CBM well logs data as the type-2 fuzzy logic has been
specifically invented to deal with.

Since CBM production is affected by various factors such as geology, tectonics, reservoir, completion and operation
parameters,  selection  of  the  most  appropriate  input  output  turns  to  be  a  challenging  task.  As  to  the  complicated
nonlinear relation existing between these parameters, methods analyze and assess the input output parameters of T2FLS
by integrating qualitative analysis method and quantitative assessment method (Fuzzy cluster analysis [17] and grey
correlation degree analysis [18]) has been put forward. The goal of the input selection technology is to select inputs
with  most  relevance  to  the  outputs  and  with  the  least  redundancy  between  inputs.  Considering  coal  jam,  proppant
flowback, equipment failure and other factor's influence on the gas rate profile, we used the parameter of cumulative
average  gas  production  to  weaken  the  uncertainty  of  the  output.  Based  on  the  previous  research  results  and  actual
situation, the output of the CBM fracturing effect are: cumulative average gas production rate, peak gas rate and time to
peak gas.  The proposed approach is  implemented in Hancheng mining area in China,  and the results  show that  the
proposed method is feasible. The comparison of this method with the ANN, T1FLS shows that the proposed method has
notable advantage in generalization, stability and consistency.

2. THEORIES OF TYPE-2 FUZZY LOGIC

2.1. Type-2 Fuzzy Logic

The concept of uncertainty that fuzzy logic was developed to tackle has been present for a long time. Zedeh first
introduced type-2 fuzzy sets (T2FS) as an extension of an ordinary fuzz set which called type-1 fuzzy sets (T1FS) [19].
After that, lots of works have been carried out by other researchers [20 - 22]. A type-2 fuzzy set is characterized by a
fuzzy membership function. The membership grade for each element is a fuzzy set in [0,1], unlike a type-1 set where
the membership grade is a crisp number in [0,1]. Therefore, T2-FS can able to tackle uncertainty in a much better way,
which make T2-FS ideal for productivity forecast.

A T2-FS, denoted as Ã, is characterized by a type-2 membership function μÃ(x,u) , where  as
follow:

(1)

Where Jx is called primary membership of x. A union set of primary membership is called footprints of uncertainty
(FOU).  As  shown  in  Fig.  (1),  the  shaded  region  is  called  FOU,  and  each  represents  the  collective  domain  of  the
respective type-2 fuzzy set. Therefore, type-2 membership function belongs to three-dimensional function. Compared
with type-1 membership function, it increases the degree of fuzzy set, and also the computation of union, intersection
and complement [20].

In interval type-2 sets, the value of secondary grade is 1 [9], as follow:
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(2)

Interval  type-2  sets  are  the  simplest  kind  of  type-2  sets,  and  there  are  fast  algorithms  to  compute  the  output.
Therefore, it has practical value, and we will only relate to interval type-2 set.

Fig. (1). Gaussian primary membership function with uncertain mean.

2.2. Type-2 Fuzzy Logic Systems

As shown in Fig. (2) a type-2 fuzzy logic system contains five components: fuzzifier, rules, inference engine, type-
reducer,  and defuzzifier  [15].  Type-2 fuzzy logic  systems is  similar  to  type-1 fuzzy logic  systems expect  the type-
reducer. Based on type-2 fuzzy sets, T2FLS possess more tunable parameters.

Fig. (2). Type-2 fuzzy logic system.

A fuzzy logic system is a T2FLS in which at least one of the fuzzy sets used in the antecedent and/or consequent
parts is a type-2 fuzzy set. Suppose that the rule base of a type-2 Mamdani FLS has M fuzzy rules, p inputs and one
output, each of which has the following form:

(3)
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where l=1, 2,…, M, Fl
1 and Gl are type-2 fuzzy set. This rule represents a type-2 fuzzy relation between the input

space, Χ1 ×…× Xp, and the output space, Y.

The reasoning process is finished by the extended sup-star composition, which include meet and join operation [15].
For  each rule,  after  the  operation,  there  will  be  a  firing  set,  which transfer  the  uncertainty  of  the  antecedent  set  to
consequent set. For interval type-2 FLS, the firing set and consequent set  are interval type-1 set. Once a crisp
input x' is applied to the T2FLS, the interval firing strength of the lth rule can be obtained as:

(4)

Where  and  are the low and upper membership grades of firing set, respectively; (y) and (y) are the
low and upper membership grades of consequent set, respectively; and * denotes product or minimum t-norm.

The results from the inference engine are type-2 fuzzy sets. The purpose of type reduction is to yield a type-1 set
(type-reduced set) from the type-2 rule output sets. The key point is how to calculate the centroid of type -2 fuzzy set.
At present, there are several kinds of type-reducer [15] such as height, center-of sums, center-of-sets (COS), etc. In this
study, COS type-reducer method has been used because it provides reasonable computational complexity compared to
other methods. The centroid of the output fuzzy set Ycos (x) can be expressed as:

(5)

Where yl and yr are upper and lower bounds of the reduced set. It must be noted that 
must  be  calculated before  Ycos  (x)  has  been calculated.  In  real  application,  and can be  calculated using the  Karnik-
Mendel iterative algorithm [16], as follows:

(6)

The results from the type reduction are type- reduced set. Type- reduced set is an interval set which represented by
[yl , yr]. A crisp output for T2FLS can be obtained by computing the cenrroid of the type- reduced set. Since all the
memberships in YCos(x) are unity, its centroid is the mid-point of its domain.

2.3. Design of T2FLS

Given an input-output training pair (x(i): y(i)), we wish to design a T2FLS so that the error function is minimized:

(7)

Consider  a  T2FLS  with  Gaussian  primary  membership  function  with  uncertain  mean  and  interval  secondary
membership function. Using product t-norm COS type-reducer, average defuzzification. At this condition, the process
to design T2FLS is to determine parameters including antecedent parameters ml
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and  yj
r.The  steepest  descent  approach  can  be  applied  to  obtain  the  following  recursions  to  update  all  the  design

parameters above in order to minimize the error function:

(8)

where pj
l(x) is fuzzy basis function associated with Yl .

(9)

Similarly,

(10)

(10)

(11)

(12)

where  the  value  of  j  depend  on  the  independent  variable  x  relative  to  the  position  of  the  mean  of  left,  right  of
Gaussian function.

3. INPUT AND OUTPUT SELECTION

The main factors which influence the production of coalbed methane can be divided into two kinds: uncontrollable
and controllable. The uncontrollable parameters include geological, tectonics, reservoir and other original conditions.
The controllable parameters include types of drilling, well completion, reservoir stimulation, depletion work system and
so on.

For production wells, conventional well logs are the only data that is available to describe the formation situation
and authors have developed many methods to identify CBM reservoir characteristic parameters based on well logs and
got  good  effect  [23].  Therefore,  based  on  black  box  theory  well  logs  can  replace  parameters  such  as  porosity,
permeability etc. In this article, we ignore the influence of structure, drilling and well completion methods on capacity
try  to  establish  the  corresponding  prediction  model  based  on  T2FLS  using  well  logging,  reservoir  stimulation
technology  and  production  system  as  primary  inputs  parameters.

The input parameters considerably affect the model’s performance. Insufficient input parameters may leads to a
model which is unable to simulate the dynamics of the system. On the other hand, substantial irrelevant variables and
abundant parameters tend to degrade generalization. Therefore, adopting an appropriate input selection technique is of
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utmost importance in prediction applications. Correlation analysis, principal component analysis, regression analysis
and variance analysis are commonly used techniques in the field of input selection [24]. However, these methods above
are  linear  techniques  which  perform  poorly  when  nonlinear  relationships  between  input  variables  prevail.  Fuzzy
clustering  allows  the  fuzziness  of  the  nature  of  the  data,  and  it  can  set  up  the  description  of  the  sample  with  the
categories of uncertainty. Therefore, it can be used to data and classes with poor separation. The advantage of grey
correlation degree analysis (GCDA) is that it requires only a lower amount of data and workload, and can largely reduce
the losses caused by the information asymmetry. In this paper,  we combine Fuzzy cluster analysis (FCA) and grey
correlation degree analysis (GCDA) techniques to select appropriate inputs for CBM productivity forecasting.

3.1. Input Selection Algorithm

The goal of the input selection algorithms is to select a set of input variables with the highest relevance to the output
and the least inter-dependence among each other. The dynamic variation characteristics of CBM are affected by many
different  factors,  and there are  equivalent  or  causal  relationships between these factors.  This  article  puts  forward a
qualitative and quantitative evaluation method to determine input variables. Controllability, relative independentability,
operability  and  comprehensive  are  the  principles  that  qualitative  evaluation  should  followed.  Then,  18  primary
parameters  were  selected  for  investigation as  shown in  Table  1.  At  present,  CBM wells  mainly  adopt  active  water
fracturing fluid. However, the active water does not compatibility with formation and may cause permeability damage.
It is commonly believed that the longer the fracturing fluid residue in formation the severer the formation damage is.
Therefore, the parameter of interval time between fracture and production (ITBFP) is selected as a primary parameter.

Table 1. Primary input parameters and ranges.

Parameter Range Parameter Range Parameter Range
thickness of coal, m 2-12 burial depth, m 384-1005 well diameter, cm 18-41
natural gamma, API 10.5-47 SP, mv -80-84 acoustic, us/m 240-467

CNL, v/v 22-60 density, g/cm3 1-2.51 LLD, Ώm 150-18343
LLS, Ώm 56-17380 RMSF, Ώm 36-13507 proppant volume, m3 7-51

pad volume, m3 70-500 total volume, m3 207-1003 injection rate, m3/min 4.5-8.5
ITBFP, day 11-431 delivery rate, m/day -6.8-17.2 casing pressure, MPa 0.01-2.7

SP: Spontaneous potential; CNL: compensated neutron logging; LLD: deep lateral resistivity; LLS: shallow lateral resistivity; RMSF: microspheric
focused resistivity.

We employ FCA and GCDA techniques to reduce the dimension of input vector. Further information about these
techniques can be found in [25, 26]. The main steps are as follow:

Using primary input factor parameters and sample data to establish the original data matrix.1.
Normalize the original data matrix and establish fuzzy similar matrix using distance method.2.
According to the fuzzy similar matrix, the transitive closure method is used to establish a fuzzy equivalence3.
matrix.
Let threshold λ vary from 1 to 0 and obtain the dynamic graphs of fuzzy cluster.  The best  threshold can be4.
determined by expertise or F-statistics.
According to  the  result  of  the  classification of  the  step  (4),  GCA method is  employed to  calculate  the  grey5.
correction degree of each class which includes more than two factors.

3.2. Output Selection

As an unconventional gas resource, the most obvious difference between CBM and conventional gas is in the gas
storage  mechanism.  For  CBM reservoir,  the  gas  mainly  stored  at  liquid  densities  on  the  surface  matrix  of  coal  by
physical sorption. In order to produce gas, it must first be desorbed form the coal. Since most CBM reservoirs are often
100% water saturated, it needs water to be produced to depressurize the coal. Wells go through a period of increasing
gas rate as the coal is dewatered. The dewatering period last from weeks to years depend on initial reservoir pressure,
critical desorption pressure, permeability and pump capacity etc. The period between the onsets of production to the
peak gas rate is referred to as “time to peak gas”. Accordingly, the gas rate is referred to as “peak gas rate”.

From  the  perspective  of  the  seepage  mechanics  and  cybernetics,  system  of  coal  bed  belongs  to  the  distributed
parameter  systems.  Reservoir  pressure,  the  scope  of  the  pressure  drop  and  permeability  are  the  most  fundamental
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physical quantities which describe the state of coal bed, but obtain those parameters is difficult. Therefore engineers
commonly  use  formation  pressure,  gas  and  water  production  rate,  recovery  degree,  and  cumulative  gas  and  water
production to reflect the development dynamic conditions of CBM.

Due to the gas production rate is an instantaneous value, using black-box method (fuzzy logic, ANN) to model the
gas rate profile is a hard test. In order to establish the sample database, it is needs to statistical data of different time
from the historical data, but this is time consuming. Furthermore, the value of cumulative gas and water production is
big and the differences between different wells are often significant which have great influence on the generalization of
the model. To overcome the shortcomings, researchers have utilized exponential function and its variants.

The production profile form each of the reservoirs used to train the network were fit to an exponential function of
time are given in Srinivasan [3]:

(13)

where the coefficients a, b, c and d were calculated with neural network method.

Weng’s  model  describes  the  things  from the  rise,  growth,  maturity  to  the  whole  process  of  recession,  which  is
similar to the process of CBM development [6]. That is,

(14)

where parameters a, b and c can be calculated by linear regression using the early stage of the production well data.

The above methods are derived from typical gas rate profile for a CBM well. However, in the process of really
production, due to coal jam, proppant flowback, equipment failure and other factors, the gas rate profile is irregular see
Fig. (3). Similar to Grey theory, the times accumulated values are more and more regular for a series of irregular data.
As  shown  in  Fig.  (3),  no  matter  how  irregular  the  actual  gas  production  profile  is,  the  cumulative  average  gas
production profile is relatively stable.

Fig. (3). Gas production profile.

Thus,  based  on  the  previous  research  results  and  actual  situation,  the  output  of  the  CBM fracturing  effect  are:
cumulative average gas production rate (CAGR) for a period of time, peak gas rate and time to peak gas.

4. APPLICATION

In order to carry out an empirical study, real-industrial data from Hancheng mining area were acquired. The number
of 3#, 5# and 11# are the main coal seams in Hancheng mining area. Those coal seams buried depth from 400 m to 1
000  m,  formation  pressure  coefficient  from  0.6  to  0.8,  single  layer  thickness  of  1.5  m  to  10  m,  permeability  of
0.01×10−3-2.50×10−3  μm2,  porosity  of  1.5%-8.0%  and  gas  content  of  3.51-14.13  m3/t.  With  characteristics  of  low
pressure, low permeability and high gas content. The entire data was divided into three groups (60% for training, 20%
for validation and 20% for testing).  All data were normalized by equation (15) before training. Mean relative error
(MRE) was used to evaluate prediction accuracy, which is as follows:
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(15)

where  and y(i) represent the actual and prediction values, respectively, N is the number of predicting
points.

(16)

According to input selection algorithm in Section 3.2, the factors influencing the peak gas flow rate is presented in
Table 2. There are also fourteen factors influencing the cumulative average gas production rate for a period of time and
time to achieve peak gas.

Table 2. Input variables for peak gas flow rate prediction.

Parameter categories Names of parameters
Reservoir Thickness of coal, burial depth, GA, LLD, AC, SP, well diameter
Fracturing pad volume,total volume, proppant volume, injection rate
Drainage ITBFP, casing pressure, delivery rate

Table 3. Statistical parameters for different output.

Output MRE (%) Correlation coefficient
Peak gas rate 0.112 0.85

Time to achieve a peak rate 0.164 0.87
CAGR for a period of days 0.128 0.92

In  this  paper,  antecedent  and  consequent  adopt  the  Gaussian  membership  function  with  uncertain  mean  as
membership function. The number of the rules is determined by numerical experiments with Matlab software. Design
parameters include antecedent parameters  and ,  parameters  and  are randomly selected form 0 to 1.
Then steepest descent approach is applied to update all  the design parameters above in order to minimize the error
function. After the T2FLS model had been trained and validated, it was used to predict output. Take output of peak gas
rate for example, the minimum absolute error will be got at the 11 cycle as shown in Fig. (4d). It will be over-trained
after that point. So iteration time will be set 330 to get the best T2FLS structure. Meanwhile, at least 3 wells data results
in some degree information loss because that there are 3 obvious peaks at every iteration cycle. The correlation between
the measurement data and the estimated value are shown in Fig. (4a-c). The black line represents the equation of “y=x”,
and the red line represents the prediction result. In addition, the MRE and correlation coefficient for different output are
also listed in Table 3. Most of the values of the T2FLS prediction are located on a line of unit slop, which shows a good
agreement with the measured data.

4.1. Case Analysis

In order to validate the T2FLS method, T1FLS and artificial neural network (ANN) have also being used to predict
the CBM production. A comparison of prediction results of the CBM production among the T1-FIS, ANN, and T2FLS
is shown in Fig. (5). In addition, the MRE, mean absolute error and minimum error for different approaches are also
listed in Table 4. In light of paper space only top performance sets are shown here. The predicted results indicate that
the T2FLS based model shows better accuracy and generalization ability than the ANN, and T2FLS models. The value
of minimum error is of ANN very small, but the prediction accuracy is relatively low and the results predicted with this
method  do  not  well  reflect  the  production  fluctuation.  This  further  indicates  that  the  T2FLS  is  able  to  deal  with
uncertainties inherent in the nature of reservoir data, and have relatively better stability and consistency which are very
crucial in any predictive model.
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Fig. (4). (a) T2FLS performance to predict peak gas flow rate. (b) T2FLS performance to predict time to achieve a peak rate. (c)
T2FLS performance to predict average gas production rate. (d) Performance of the T2FLS training of peak gas flow rate.

Fig. (5). Comparison of prediction results among T1-FIS, ANN, and T2FLS.

Table 4. Statistical parameters for different models.

Models MRE (%) Mean Absolute Error (m3) Minimum Error (m3)
T2FLS 0.104 108.1052 84.906
T1FLS 0.194 201.4924 157.6512
ANN 0.222 254.0767 14.71408

CONCLUSION

This paper has proposed a sophisticated CBM production forecasting approach based on the FCA and GCDA-based
input selection algorithm and T2FLS model. The effectiveness of the proposed method is demonstrated using field data
obtained from Hancheng mining area. These data include well logs, fracturing treatment data and production data. In
order to reduce the output fluctuation caused by discontinuous production, output parameters such as peak gas flow rate,
time to achieve a  peak rate  and average gas flow rate  are used to depict  the performance of  CBM wells.  FCA and
GCDA techniques are used here to select a set of input variables with the highest relevance to the output and the least
inter-dependence among each other. A comparison of measured data with estimated results shows that the T2FLS based

T
2

-F
L

S
 p

re
d

T
ra

in
in

g

 

 

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000
Measurement data (m

3
/day)

T
2-

FL
S 

pr
ed

ic
ti

on
 (m

3
/d

ay
)

0

50

100

150

200

250

300

350

400

450

500

550

0 50 100 150 200 250 300 350 400 450 500 550
Measurement data (day)

T
2-

FL
S 

pr
ed

ic
ti

on
 (d

ay
)

(a) (b) 

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600
Measurement data (m

3
/day)

T
2-

FL
S 

pr
ed

ic
ti

on
 (m

3 /d
ay

)

 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300 350
Iterations

T
ra

in
in

g 
ab

so
lu

te
 e

rr
or

s

(c) (d) 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000 1200

Time (days)

G
as

 R
at

e 
(m

3 )

Measured daily gas production

Measured average daily gas production

T2FLS model

T1FLS model

ANN model



Production Forecasting of Coalbed Methane Wells The Open Petroleum Engineering Journal, 2016, Volume 9   277

CBM production forecasting model is reliable and effective. It can reflect the dynamic characteristics of CBM at the
development  stage,  and  can  provide  important  technical  support  for  making  and  establishing  scientific  schemes  of
development programming for CBM. A comparison of estimated output of the CBM production among the T1FIS,
ANN, and T2FLS shows that the T2FLS have relatively better stability and consistency than that of ANN and T1FIS
methods.
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