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Abstract:

Background:

History matching is an indispensable phase in the workflow of reservoir analysis. Nevertheless, there is a considerable challenge in
performing the procedure in a proper scientific manner due to the inherent nature of non-unique solutions from the many-unknown
variables with limited known equations.

Objective:

In this study, we introduce the Ensemble Kalman Filter (EnKF) method complemented by the Region-Based Covariance Localization
(RCL) scheme to address the aforementioned issue.

Method:

The  algorithms  work  initially  by  modifying  the  covariance  localization  generated  by  Gaussian  correlation  model  using  region
information  such  as  facies  or  flow unit,  in  which  the  area  within  a  region  is  spatially  correlated.  Subsequently,  the  correlation
between distant areas in the region is eliminated, hence promoting better modification of the distribution of the parameters while
maintaining the characteristics of the predefined geological model of the reservoir.

Result:

Result shows that RCL scheme is capable of enhancing the performance of EnKF procedure and produce parameter distributions that
is close to the true model of the reservoir.

Conclusion:

Implementation  of  the  proposed  methodology  ameliorates  the  accuracy  and  reliability  of  the  history  matching  process,  thus
establishing better consideration in predicting reservoir performance.

Keywords: History matching, Ensemble kalman Filter, Region-Based covariance localization, Reservoir analysis.

1. INTRODUCTION

History matching is an essential phase in reservoir dynamic modeling workflow. The aim of history matching is to
generate  the  most  appropriate  reservoir  model  that  would  provide  prediction  as  close  as  possible  to  the  acquired
production data [1]. Static parameters in a reservoir model that usually need to be tuned in history matching process are
skin  factor,  permeability  thickness,  vertical  to  horizontal  permeability  ratio  and  aquifer  constant.  Usually,  these
parameters were assigned as single values, thus making them easier to be modified during the trial-and-error procedure
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which is commonly implemented in the history matching analysis. This practice would ignore the distribution of static
parameters such as porosity and permeability. Adjustment of parameters distribution generally acquires revisiting static
geological model, thus extending the period of investigation and escalates study costs.

While static parameters were unlikely to be modified in the history matching study, they have profound effects on
reservoir performance. If the discrepancy between the true distribution of static parameters and their estimated values in
the model is sufficiently large, then it would be difficult to achieve reasonably match condition in the history matching
scheme. Furthermore, even though we manage to tune the parameters, it is likely that the result would be geologically
unrealistic due to the non-uniqueness nature of the solution. This will incite serious issue during the production forecast
analysis stage, in which the proposed scenario would not represent the actual future reservoir performance. Obviously,
there is a substantial need for a sound methodology to be applied in the history matching endeavor that could update the
distribution of static reservoir parameters while honoring geological consideration.

Ensemble  Kalman  Filter  (EnKF)  is  a  procedure  that  can  be  implemented  to  address  the  problem.  The  EnKF
algorithm is a Monte Carlo approach for extended Kalman filter scheme that has been vastly utilized in many other
fields of study [2], such as automation process, control systems [2], ocean dynamics and atmospheric physics [3 - 5].
Assimilation techniques also have been developed by using flow-dependent statistics in weather forecasting studies [6].
Particularly in history matching process, EnKF has successfully applied to update porosity distribution by incorporating
years of production data [7, 8]. Covariance localization concept is commonly incorporated in EnKF in order to alleviate
the  effect  of  spurious  correlations.  Without  localization,  there  is  possibility  in  some scenarios  that  EnKF does  not
provide a reliable characterization of uncertainty [9].  Earlier approach to mitigate the spurious correlation is to use
distance-dependent reductions [10]. More recent proposed methods were to use well pattern as basis for localization
function [11] and to employ streamline concept to identify the grids which are affected by production and injection
wells [12]. Similar notion could also be applied to the finite difference simulator by associating fluid velocity fields
[13]. The streamline or fluid velocity models may also be used to identify influenced region pertained to each well. This
region will be regarded as a cornerstone in defining the covariance localization [14]. The latest updates on localization
scheme is by utilizing data driven adaptive localization that update the model that have relatively high correlations [15].

Nevertheless,  there  are  challenges  in  implementing  the  EnKF for  the  history  matching procedure.  While  EnKF
effectively  matches  the  prediction  to  the  recorded  data,  the  generated  model  often  experiences  lack  of  geological
justification. Therefore, it is pivotal to develop EnKF procedure that could incorporate geological model when updating
parameter  distribution.  Moreover,  history  matching  involves  underdetermined  problems,  in  which  the  number  of
unknown variables exceeds the available equations. The possible solution to address this is by reducing the number of
variables by evaluating the physics of fluid flow. Careful examination of significant parameters that affect reservoir
performance might be performed to reduce the number of unknown variables [12].

Previous investigation has shown the likelihood in generating facies maps by assimilating production and seismic
data using EnKF [16]. However, information regarding facies maps is usually tied to the development of conceptual
geological  events.  Hence,  the maps will  be available from geological  study.  This study focuses on using such map
obtained from independent geological assessment to improve the updating process of static parameters.

2. METHODS

Kalman filter is a linear estimator that combines measurement data with prediction and use it to update the static or
dynamic parameters [4]. The algorithm assimilates both prediction and measurement by determining which information
reflects the actual model. Subsequently, it establishes the weight factors for the two sources of data respectively. In
regular Kalman filter method, information from prediction and measurement will be used to govern the estimated value
of a particular parameter by the following mathematical representation:

(1)

(2)

Matrix P-
K is the covariance matrix of state parameter, while matrix KK is the Kalman gain which is a matrix that

gives weight factor for measurement and prediction data. The variables X-
K and Z-

K represent information pertained to
the  parameter  x  gained  from the  prediction  and  measurement  data,  respectively.  Matrix  H  is  called  transformation

�̂�𝑘 = �̂�𝑘 ∓ 𝑲𝑘 [𝒛𝑘 − 𝑯𝒙𝑘
−] 

𝑲𝑘 = 𝑷𝑘
−𝑯𝑇[𝑯𝑷𝑘

−𝑯𝑇 + 𝑹]−1 
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matrix, which is used to transform parameter unit into measurement unit. Matrix R denote the measurement noise that
usually generated using standard normal distribution.

The formulation of the regular Kalman filter demonstrated by equations (1) (2) is in the form of linear expression
which describes a linear model. On the other hand, history matching analysis encompasses non-linear problem. Hence,
regular Kalman filter approach is not suitable to be implemented in this particular case. This issue could be handled by
implemented  the  Ensemble  Kalman  Filter  (EnKF)  procedure  [17].  This  technique  uses  randomization  of  static
parameters  as  an  ensemble  and  utilizes  the  ensemble  covariance  as  a  representation  of  the  true  covariance  model.
Equation  (3)  illustrates  the  mathematical  representation  for  the  EnKF  which  updates  the  regular  Kalman  filter
formulation as was displayed in equation (2). In this study, we employ the EnKF consideration instead of the regular
Kalman filter scheme.

(3)

Matrix  CK  is  the  covariance  matrix  which  is  generated  by  ensemble  members.  Since  initial  covariance  matrix
generates  static  parameters,  it  is  imperative  to  ascertain  this  matrix  so  that  it  represents  the  behavior  of  the  static
parameters.

The most crucial static parameters in the history matching study are porosity and permeability. From geological
consideration, for instance sedimentation process, it is inferred that porosity and permeability are spatially correlated.
Such  correlation  could  be  formulated  using  the  Gaussian  correlation  model  [18]  as  is  shown  by  the  following
formulation:

(4)

The  variables  x,  y,  z  represent  grid  numbers  in  Cartesian  axis  in  x,  y,  and  z  direction,  respectively.  Variable  l
expresses the correlation length, while the dummy indexes i, j are the grid indexes under corresponding Cartesian axis x,
y, and z. The correlation length could be derived from variogram analysis performed during the static modeling process.
It  can  be  inferred  from  equation  (4)  that  adjacent  grids  will  have  strongest  relationship,  illustrated  with  highest
correlation value amongst them. However, the situation will not always follow this basic rule, particularly when the
grids are under different region models such as facies, rock type, or flow unit. To address this problem, we modify the
Gaussian correlation by introducing matrix modifier term (F) defined as:

(5)

Where i, j is the grid index while n represents the total grid. Vector f accounts for the region model index that is
used in the reservoir model. By incorporating matrix modifier term F, the original Gaussian correlation displayed in
equation (4) is modified into the following expression:

(6)

The matrix multiplication procedure in equation (6) is also known as the Hadamard product. The Schur Product
Theorem states that if both F and C are positive semidefinite matrices, then the Hadamard product of them would also
be  positive  semidefinite  [19].  Meanwhile,  there  is  no  guarantee  that  both  F  and  C  and  matrices  are  in  positive
semidefinite  form  in  our  history  matching  case.  To  overcome  this  obstacle,  we  incorporate  two  procedures  in  our
algorithm to compute the nearest positive semidefinite matrices. These procedures are based on either Frobenius norm
or L2 norm [20].

Under  Frobenius  norm consideration,  the  existence  of  a  unique  solution  that  is  nearest  to  the  matrix  C’  can  be
confirmed by the following equations:

(7)
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(8)

(9)

Matrix is a diagonal matrix consists of eigenvalues derived from the eigenvalue decomposition, while matrix Q is
an eigenvectors matrix. If negative eigenvalues are found during the calculation process, these values will be replaced
with  the  smallest  positive  real  number  ɛ.  This  number  is  limited  by  the  accuracy  of  numerical  representation  in
computer memory.

Meanwhile, under the L2 norm, the existence of a solution that is nearest to the matrix C’ can be verified using the
following equations:

(10)

(11)

(12)

The challenge in calculating nearest correlation matrix under L2 norm is to determine the value of δ2(C'), which is a
L2 norm distance function. Either way, both solutions are adequate to ensure positive definiteness of correlation matrix.
It should be noted that although there is a unique solution under Frobenius Norm, there is no guarantee that such unique

solution exists under L2  norm [20].  After correlation matrix is  attained, the matrix  is  converted into covariance
matrix  by using standard deviation σ of the static parameters.

(13)

If every single of static parameters in the grid has their standard deviation, the covariance matrix could be calculated
using the following formula:

(14)

(15)

Matrix Σ  is  the diagonal  matrix  which is  calculated from standard deviation of  the stated parameters.  Once the
covariance matrix has been obtained, the ensemble could be generated by implementing Cholesky Decomposition into
the covariance matrix , as is exemplified by the following formula:

(16)

If the generated covariance matrix is not in positive definite form, the Cholesky Decomposition will fail. Therefore,
it is important to find nearest positive definite matrix in the previous step to prevent such problem. Nevertheless, it is
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important to mention that while there exists unique solution under Frobenius norm realm, there is no guarantee that
such unique solution exists under L2 norm [20].

After triangular matrix L is obtained, the ensemble state parameter X is built using the following equation:

(17)

(18)

Matrix N (0, 1) is generated from random numbers which is based on standard normal distribution. The resulting
ensemble state X' will contain n grid and m realizations of state parameter x.

(19)

Under  EnKF  method,  for  every  ensemble  member,  matrix  X'  is  combined  with  prediction  matrix  G  Matrix  G
contains of d prediction and m randomization of vector g.

(20)

Therefore, the EnKF equation becomes:

(21)

Hence, to calculate Kalman Gain as in equations (3) and (21), the transformation matrix H is needed to transform
matrix X' into matrix Xd. The transformation matrix H consists of m times n + d elements, where d denotes the number
of measurement vector Z.

(22)

(23)

The covariance matrix is updated using the following formula [4]:

(24)

3. VISUALIZATION OF REGION BASED COVARIANCE LOCALIZATION ENKF METHODOLOGY

The previous algorithm could be further explained by an example. All visualization is done by using Matplotlib
[21].
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Fig. (1). Region model and resulting region modifier. On the region modifier, red represent one while blue represents zero.

Fig. (2). On the left side, correlation matrix is generated by Gaussian correlation model. On the right side, correlation matrix has
been modified by region modifier.

Fig. (3). Lower triangular matrix of original correlation matrix (left) and modified correlation matrix (right).
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Suppose there is  a  region model  that  represents  two facies  in  the reservoir  model  as  shown in Fig.  (1).  From a
geological point of view, the closer the distance between grid the high will be the spatial correlation. However, even if
the grid is adjacent, the static parameters on red facies should not be correlated to the blue facies. Therefore, from this
rule, we could generate modifier that is based on region information (Fig. 2).

The initial correlation matrix is generated using Gaussian correlation model. From color representation, it is clearly
shown that the correlation value is decreased when the distance between grid is increased. After correlation matrix is
obtained, the correlation matrix is factorized using Cholesky Decomposition as Fig. (3).

This lower triangular matrix is used to generate correlated random and create ensemble realization of the initial
reservoir model. The effect of modified triangular matrix could be seen by generating random data point on a 2D plane
as illustrated in Fig. (4).

Fig. (4). Randomization result based on original lower triangular matrix (left) and modified lower triangular matrix (right).

Fig. (5). Permeability distribution. On the left is true model while on the right side is initial distribution.

The randomization result follows the behavior of the pre-determined modifier. It is shown on the map that if there is
no correlation, the distribution shape is closer to round.
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4. RESULTS OF IMPLEMENTATION OF REGION-BASED COVARIANCE LOCALIZATION ENKF

The synthetic reservoir  model is  created to test  the capability of the region based covariance modifier  EnKF to
perform history matching. This synthetic reservoir model has two distinct facies with different permeability distribution
on each facies (Fig. 5).

First facies have a permeability of 200 md, while second facies have a permeability of 1000 md. The algorithm will
start on an initial model with the permeability of 500 md. The selection of permeability values gives more challenge as
the algorithm needs to increase and decrease the permeability distribution in the different part of reservoir model at the
same time. Other reservoir parameters are kept the same between true and initial model to prevent bias in the result. The
number of well is maintained at a minimum, one well for each facies, to see how far the algorithm could find correct
distribution. The distribution is updated by assimilating the prediction from the model and measurement data, in this
case, it is an oil production from each well. The reservoir parameters are presented in (Table 1).

Table 1. Reservoir parameters used in the model.

Parameters Value
Grid Size 50 x 50, 100 ft.

Top Depth 5000 ft.
Thickness 100 ft.

Initial Pressure 2048 psi.
Temperature 212 F

Porosity 10%
Oil Density 20 API
Gas Density 0.8

The problem initially solved using standard EnKF. Initial ensemble consists of 50 realizations which is generated
using  equation  (17).  The  correlation  matrix  is  developed  using  gaussian  correlation  model  to  maintain  spatial
correlation through the ensemble updates. Correlation length used in gaussian correlation model is 500 ft., which equal
to 5 grids. The correlation matrix is transformed into covariance matrix by applying eq. (13) using standard deviation of
10% of initial permeability. The average permeability The oil production from all realization and the resulting history
match are shown in Figs. (6 and 7) while the average permeability from all realizations are shown in Fig. (8).

Fig. (6). Change of permeability distribution over time using ensemble Kalman filter. The permeability shown here is the average
permeability of all realizations. Initial correlation matrix was generated using Gaussian correlation model. The numbers above the
picture are a timestep in reservoir simulation. Correlation length = 500 ft. (5 grid).
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Fig. (7). Oil rate from 50 realizations. Solid line represents the oil rate from average permeability, while dashed line represents
measurement data.

Fig.  (8).  Oil  rate  from  reservoir  model  that  is  built  using  average  permeability  of  all  realizations.  The  updated  model  gives  a
production profile that matches to the true model.

Under EnKF, the updated permeability distribution over time follows the actual model distribution, but only in the
area  close  to  the  wells.  The  updated  distribution  follows  spatial  correlation  that  has  been  defined  using  Gaussian
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correlation  model.  Even  though  the  distribution  is  still  far  from  the  actual  model,  the  production  data  is  already
matched. The root mean squared error (RMSE) for the resulting grid is 336 md, while for production data, RMSE for
W-1 is 188 BOPD and W-2 is 217 BOPD.

Fig.  (9).  Heatmap  of  modifier  matrix  generated  by  equation  (5)  for  two  facies  model.  The  correlation  from  different  facies  is
removed.

Fig. (10). Oil rate from 50 realizations using RCL-EnKF. Solid black line represents oil rate from average permeability, while dashed
line represent measurement data.

It means that the updated grid near the wellbore already gives significant effect to oil production. This outcome
confirms that history matching gives a non-unique solution. Under the practical situation, such result could give the
wrong impression that the updated distribution already represents accurate reservoir model. Therefore, to minimize the
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consequence,  it  is  important  to  add  another  boundary  condition,  such  as  geological  or  petrophysical  information.
Updating permeability distribution while maintaining geological or petrophysical model would reduce the probability of
non-unique solution.

Fig. (11). Comparison of oil rate from model generated by RCL-EnKF and true model. The reservoir model is built using average
permeability of 50 realizations.

Fig. (12). Change of average permeability distribution using region based covariance localization. The facies model is preserved,
while updating permeability distribution. The number above the pictures is a timestep in reservoir simulation.
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the  modified  correlation  matrix  maintains  the  positive  semidefinite  properties,  eqs.  (7)  (8)  and  (9)  are  used.  The
modified correlation matrix is transformed into correlation matrix using eq. (13). Finally, the correlation matrix is used
to generate initial ensemble by implementing eqs. (17) and (18). The modifier matrix is shown in (Fig. 9).

From the snapshot of permeability distribution over time Fig. (12) it shows that the facies model is preserved, while
updating the permeability distribution. RMSE for the resulting grid is 229 md, while for production data, Figs. (10 and
11) RMSE for W-1 is 106 BOPD and W-2 is 137 BOPD. The comparison of RMSE for different methods are presented
in  Table  (2).  The  preservation  of  facies  model  gives  a  real  advantage  as  the  updated  model  does  not  change  the
geological concept that has been implemented in the reservoir. Therefore, this algorithm practically can be used in the
daily operation in reservoir management workflow.

The estimated permeability distribution is different from true model since the algorithm only assimilates few data,
which is single well for each facies. If measurement data is added, the estimated permeability would be much closer to
true model. For example, if we add additional wells to the previous model, the permeability RMSE error is reduced into
189.45 md, which makes it closer to true model (Fig. 13).

Fig. (13).  Change of permeability distribution for region based covariance localization using measurement data from additional
wells. The estimated permeability is closer to true permeability distribution.

Table 2. Root Mean Squared Error of the grid and oil production data for simple two facies model.

Root Mean Squared Error Grid Oil Rate

Standard EnKF (2 Wells) 336 md W-1: 188 BOPD
W-2: 207 BOPD

RCL EnKF (2 Wells) 229 md W-1: 106 BOPD
W-2: 137 BOPD

RCL EnKF (6 Wells) 189 md

W-1: 73 BOPD
W-2: 58 BOPD
W-3: 100 BOPD
W-4: 53 BOPD
W-5: 26 BOPD
W-6: 84 BOPD

To further test this concept, the real facies model is used. The facies model is taken from the geological study of X
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field in Indonesia, which consists of two distinctive facies (Fig. 14). The first facies is a channelized reservoir and the
second facies is levee area. The permeability of the channel reservoir is substantially higher than in levee area. On the
channel area, the average permeability is 800 md, while on the levee area the average permeability is 300 md. The
initial input is a homogenous model with permeability of 200 md. There is only three production wells available in the
field.  Other  reservoir  and  ensemble  parameters  are  kept  the  same  as  the  previous  model  to  reduce  the  bias  in
evaluations.

Fig. (14). Permeability distribution that follows facies model from X field in Indonesia. On the left is a true model, while on the right
side is an initial permeability distribution.

Fig. (15). Oil rate from 50 realizations using standard EnKF method. Solid black line represent oil rate from average permeability
while dashed line represent measurement data.

Under such facies model, standard EnKF could give a match results with RMSE of 205 md Figs. (15 and 16). But
the resulting permeability distribution is far from true model (Fig. 17).  The channel reservoir is not well  preserved
under standard EnKF updating process.
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Fig. (16). Comparison of oil rate from true model and predicted model using Standard EnKF. The reservoir model is built using
average permeability of 50 realizations.

Fig. (17). Change of permeability distribution over time using standard EnKF. The facies model does not follow the facies concept
developed by geological study.

Using the same parameters, the RCL-EnKF is implemented. The modifier matrix is visualized in Fig. (18). The
result shows that the predictions are matched to the measurement data (Figs. 19 and 20). The permeability distribution
is updated, while following designated facies model, resulting in more accurate results (Fig. 21). Also in this scenario,
RCL-EnKF method reducing the grid RMS error from 205 md to 42 md, which is 79% error reduction (Table 3).
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Fig. (18). Heatmap of modifier matrix generated by equation (5) for channelized facies model. The correlation from different facies
is removed.

Fig. (19). Oil rate from 50 realizations using RCL-EnKF method. Solid black line represent oil rate from average permeability while
dashed line represent measurement data.
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Table 3. Root Mean Squared Error of the grid and oil production data from channelized reservoir model.

Root Mean Squared Error Grid Oil Rate

Standard EnKF (3 Wells) 205 md
W-1: 188 BOPD
W-2: 207 BOPD
W-3: 49 BOPD

RCL EnKF (3 Wells) 42 md
W-1: 73 BOPD
W-2: 27 BOPD
W-3: 44 BOPD

Fig. (20). Comparison of oil rate from true model and predicted model using RCL-EnKF. The reservoir model is built using average
permeability of 50 realizations.

Fig. (21). Change of permeability using RCL EnKF. The facies model is preserved while updating the permeability values.
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CONCLUSION

Implementation of region based covariance localization in EnKF has successfully updated the parameter distribution
by incorporating parameter modification process within a region model. Hence, the generated parameter distribution
should be able to maintain the geological or petrophysical notions. This endeavor enables geological justification for the
generated  parameter  distribution.  The  RMSE error  for  RCL-EnKF is  considerably  lower  than  standard  EnKF.  The
algorithm is relatively straightforward, hence suitable to be applied in reservoir management workflow.

The RCL-EnKF is highly dependent on the quality of facies estimation. Having good estimate of facies model will
gives accurate results. Usually in early development of reservoir, the estimated facies model has high uncertainty. This
could introduce bias in updating process. To improve the quality of reservoir properties estimation, this method could
be  combined  with  another  EnKF  based  facies  prediction  method  [18].  The  facies  are  predicted  prior  to  reservoir
properties estimation.

Another challenge is if there is too many facies type in the model, it  is possible to produce matched results yet
inaccurate  properties  distribution  due  to  increased  degree  of  freedom.  Adding  limit  on  EnKF  search  space  could
potentially reduce the degree of freedom and improve the results.

The  proposed  localization  method  is  not  limited  only  to  EnKF.  Implementation  of  region  based  covariance
localization on another algorithm is yet to be investigated. The proposed localization could possibly be used to test the
consistency of seismic inversion with the prior facies model by evaluating elastic model parameters.
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